Commit 03f4554e authored by Robert Dubner's avatar Robert Dubner
Browse files

Sanitize radiusclient/md5

parent f549bbc8
......@@ -10,7 +10,10 @@
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*/
*
* As noted below, portions of this code were derived from public-domain sources
*
*/
#include <string.h>
#include "hmacmd5.h"
......@@ -110,6 +113,6 @@ hmac_md5_final( HMAC_MD5_CTX *context,
md5_init(&context->context); // init context for second pass
md5_update(&context->context, k_opad, 64); // start with outer pad
md5_update(&context->context, digest, 16); // then results of first hash
md5_final(digest, &context->context); // finish up second pass
md5_final(digest, &context->context); // finish up second pass
}
/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
*
* Copyright 2021 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*
* As noted below, portions of this code were derived from public-domain sources
*
*/
#ifndef _h_HMACMD5_H
#define _h_HMACMD5_H
#include <stdint.h>
#include "md5.h"
typedef struct HMAC_MD5_CTX_
......
/**
* @note license is LGPL, but largely derived from a public domain source.
/* This work is part of OpenLDAP Software <http://www.openldap.org/>.
*
* Copyright 2021 The OpenLDAP Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted only as authorized by the OpenLDAP
* Public License.
*
* A copy of this license is available in the file LICENSE in the
* top-level directory of the distribution or, alternatively, at
* <http://www.OpenLDAP.org/license.html>.
*
* As noted below, portions of this code were derived from public-domain sources
*
* @file md5.c
* @brief md5 digest functions.
*/
/*
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
* MD5 Message-Digest Algorithm (RFC 1321).
*
* Homepage:
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
*
* Author:
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
*
* This software was written by Alexander Peslyak in 2001. No copyright is
* claimed, and the software is hereby placed in the public domain.
* In case this attempt to disclaim copyright and place the software in the
* public domain is deemed null and void, then the software is
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
* general public under the following terms:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*
* There's ABSOLUTELY NO WARRANTY, express or implied.
*
* (This is a heavily cut-down "BSD license".)
*
* This differs from Colin Plumb's older public domain implementation in that
* no exactly 32-bit integer data type is required (any 32-bit or wider
* unsigned integer data type will do), there's no compile-time endianness
* configuration, and the function prototypes match OpenSSL's. No code from
* Colin Plumb's implementation has been reused; this comment merely compares
* the properties of the two independent implementations.
*
* The primary goals of this implementation are portability and ease of use.
* It is meant to be fast, but not as fast as possible. Some known
* optimizations are not included to reduce source code size and avoid
* compile-time configuration.
*/
#include <string.h>
#include "md5.h"
/** Calculate the MD5 hash of the contents of a buffer
/*
* The basic MD5 functions.
*
* @param[out] out Where to write the MD5 digest. Must be a minimum of MD5_DIGEST_LENGTH.
* @param[in] in Data to hash.
* @param[in] inlen Length of the data.
* F and G are optimized compared to their RFC 1321 definitions for
* architectures that lack an AND-NOT instruction, just like in Colin Plumb's
* implementation.
*/
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z) (((x) ^ (y)) ^ (z))
#define H2(x, y, z) ((x) ^ ((y) ^ (z)))
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
void
md5_calc(uint8_t *out, uint8_t const *in, size_t inlen)
{
MD5_CTX ctx;
md5_init(&ctx);
md5_update(&ctx, in, inlen);
md5_final(out, &ctx);
}
/*
* The MD5 transformation for all four rounds.
*/
#define STEP(f, a, b, c, d, x, t, s) \
(a) += f((b), (c), (d)) + (x) + (t); \
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
(a) += (b);
#ifndef HAVE_OPENSSL_MD5_H
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
* SET reads 4 input bytes in little-endian byte order and stores them in a
* properly aligned word in host byte order.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
* The check for little-endian architectures that tolerate unaligned memory
* accesses is just an optimization. Nothing will break if it fails to detect
* a suitable architecture.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to md5_init, call md5_update as
* needed on buffers full of bytes, and then call md5_final, which
* will fill a supplied 16-byte array with the digest.
* Unfortunately, this optimization may be a C strict aliasing rules violation
* if the caller's data buffer has effective type that cannot be aliased by
* MD5_u32plus. In practice, this problem may occur if these MD5 routines are
* inlined into a calling function, or with future and dangerously advanced
* link-time optimizations. For the time being, keeping these MD5 routines in
* their own translation unit avoids the problem.
*/
#define PUT_64BIT_LE(cp, value) do {\
(cp)[7] = (value)[1] >> 24;\
(cp)[6] = (value)[1] >> 16;\
(cp)[5] = (value)[1] >> 8;\
(cp)[4] = (value)[1];\
(cp)[3] = (value)[0] >> 24;\
(cp)[2] = (value)[0] >> 16;\
(cp)[1] = (value)[0] >> 8;\
(cp)[0] = (value)[0];\
} while (0)
#define PUT_32BIT_LE(cp, value) do {\
(cp)[3] = (value) >> 24;\
(cp)[2] = (value) >> 16;\
(cp)[1] = (value) >> 8;\
(cp)[0] = (value);\
} while (0)
static const uint8_t PADDING[MD5_BLOCK_LENGTH] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
#define SET(n) \
(*(MD5_u32plus *)&ptr[(n) * 4])
#define GET(n) \
SET(n)
#else
#define SET(n) \
(ctx->block[(n)] = \
(MD5_u32plus)ptr[(n) * 4] | \
((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
#define GET(n) \
(ctx->block[(n)])
#endif
/** Initialise a new MD5 context
*
* Set bit count to 0 and buffer to mysterious initialization constants.
*
* @param[out] ctx to initialise.
/*
* This processes one or more 64-byte data blocks, but does NOT update the bit
* counters. There are no alignment requirements.
*/
static const void *
body(MD5_CTX *ctx, const void *data, unsigned long size)
{
const unsigned char *ptr;
MD5_u32plus a, b, c, d;
MD5_u32plus saved_a, saved_b, saved_c, saved_d;
ptr = (const unsigned char *)data;
a = ctx->a;
b = ctx->b;
c = ctx->c;
d = ctx->d;
do
{
saved_a = a;
saved_b = b;
saved_c = c;
saved_d = d;
/* Round 1 */
STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
/* Round 2 */
STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
/* Round 3 */
STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)
/* Round 4 */
STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
a += saved_a;
b += saved_b;
c += saved_c;
d += saved_d;
ptr += 64;
}
while (size -= 64);
ctx->a = a;
ctx->b = b;
ctx->c = c;
ctx->d = d;
return ptr;
}
void
md5_init(MD5_CTX *ctx)
{
ctx->count[0] = 0;
ctx->count[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xefcdab89;
ctx->state[2] = 0x98badcfe;
ctx->state[3] = 0x10325476;
ctx->a = 0x67452301;
ctx->b = 0xefcdab89;
ctx->c = 0x98badcfe;
ctx->d = 0x10325476;
ctx->lo = 0;
ctx->hi = 0;
}
/** Feed additional data into the MD5 hashing function
*
* @param[in,out] ctx to update.
* @param[in] in Data to hash.
* @param[in] inlen Length of the data.
*/
void
md5_update(MD5_CTX *ctx, uint8_t const *in, size_t inlen)
md5_update(MD5_CTX *ctx, const void *data, unsigned long size)
{
size_t have, need;
MD5_u32plus saved_lo;
unsigned long used, available;
/* Check how many bytes we already have and how many more we need. */
have = (size_t)((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));
need = MD5_BLOCK_LENGTH - have;
saved_lo = ctx->lo;
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
ctx->hi++;
ctx->hi += size >> 29;
/* Update bitcount */
/* ctx->count += (uint64_t)inlen << 3;*/
if ((ctx->count[0] += ((uint32_t)inlen << 3)) < (uint32_t)inlen)
{
/* Overflowed ctx->count[0] */
ctx->count[1]++;
}
ctx->count[1] += ((uint32_t)inlen >> 29);
used = saved_lo & 0x3f;
if (inlen >= need)
if (used)
{
if (have != 0)
{
memcpy(ctx->buffer + have, in, need);
md5_transform(ctx->state, ctx->buffer);
in += need;
inlen -= need;
have = 0;
}
available = 64 - used;
/* Process data in MD5_BLOCK_LENGTH-byte chunks. */
while (inlen >= MD5_BLOCK_LENGTH)
if (size < available)
{
md5_transform(ctx->state, in);
in += MD5_BLOCK_LENGTH;
inlen -= MD5_BLOCK_LENGTH;
memcpy(&ctx->buffer[used], data, size);
return;
}
}
/* Handle any remaining bytes of data. */
if (inlen != 0) memcpy(ctx->buffer + have, in, inlen);
}
memcpy(&ctx->buffer[used], data, available);
data = (const unsigned char *)data + available;
size -= available;
body(ctx, ctx->buffer, 64);
}
/** Finalise the MD5 context and write out the hash
*
* Final wrapup - pad to 64-byte boundary with the bit pattern 1 0*
* (64-bit count of bits processed, MSB-first).
*
* @param[out] out Where to write the MD5 digest. Minimum length of MD5_DIGEST_LENGTH.
* @param[in,out] ctx to finalise.
*/
void
md5_final(uint8_t out[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
{
uint8_t count[8];
size_t padlen;
int i;
/* Convert count to 8 bytes in little endian order. */
PUT_64BIT_LE(count, ctx->count);
/* Pad out to 56 mod 64. */
padlen = MD5_BLOCK_LENGTH -
((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));
if (padlen < 1 + 8)
padlen += MD5_BLOCK_LENGTH;
md5_update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
md5_update(ctx, count, 8);
if (out != NULL)
if (size >= 64)
{
for (i = 0; i < 4; i++)
PUT_32BIT_LE(out + i * 4, ctx->state[i]);
data = body(ctx, data, size & ~(unsigned long)0x3f);
size &= 0x3f;
}
memset(ctx, 0, sizeof(*ctx)); /* in case it's sensitive */
}
/* The four core functions - F1 is optimized somewhat */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
memcpy(ctx->buffer, data, size);
}
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
#define OUT(dst, src) \
(dst)[0] = (unsigned char)(src); \
(dst)[1] = (unsigned char)((src) >> 8); \
(dst)[2] = (unsigned char)((src) >> 16); \
(dst)[3] = (unsigned char)((src) >> 24);
/** The core of the MD5 algorithm
*
* This alters an existing MD5 hash to reflect the addition of 16
* longwords of new data. md5_update blocks the data and converts bytes
* into longwords for this routine.
*
* @param[in] state 16 bytes of data to feed into the hashing function.
* @param[in,out] block MD5 digest block to update.
*/
void
md5_transform(uint32_t state[4], uint8_t const block[MD5_BLOCK_LENGTH])
md5_final(unsigned char *result, MD5_CTX *ctx)
{
uint32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
unsigned long used, available;
used = ctx->lo & 0x3f;
for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++)
ctx->buffer[used++] = 0x80;
available = 64 - used;
if (available < 8)
{
in[a] = (uint32_t)(
(uint32_t)(block[a * 4 + 0]) |
(uint32_t)(block[a * 4 + 1]) << 8 |
(uint32_t)(block[a * 4 + 2]) << 16 |
(uint32_t)(block[a * 4 + 3]) << 24);
memset(&ctx->buffer[used], 0, available);
body(ctx, ctx->buffer, 64);
used = 0;
available = 64;
}
a = state[0];
b = state[1];
c = state[2];
d = state[3];
MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);