Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
O
OpenLDAP
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Christopher Ng
OpenLDAP
Commits
33222eb4
Commit
33222eb4
authored
17 years ago
by
Gavin Henry
Browse files
Options
Downloads
Patches
Plain Diff
Backup strategy discussions. db_recover example to do.
parent
10fcc309
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
doc/guide/admin/maintenance.sdf
+35
-3
35 additions, 3 deletions
doc/guide/admin/maintenance.sdf
with
35 additions
and
3 deletions
doc/guide/admin/maintenance.sdf
+
35
−
3
View file @
33222eb4
...
...
@@ -10,7 +10,40 @@ discuss how to correctly maintain an OpenLDAP deployment.
H2: Directory Backups
MORE
Backup strategies largely depend on the amount of change in the database
and how much of that change an administrator might be willing to lose in a
catastrophic failure. There are two basic methods that can be used:
1. Backup the Berkeley database itself and periodically back up the transaction
log files:
Berkeley DB produces transaction logs that can be used to reconstruct
changes from a given point in time. For example, if an administrator were willing to only
lose one hour's worth of changes, they could take down the server in
the middle of the night, copy the Berkeley database files offsite, and bring
the server back online. Then, on an hourly basis, they could force a
database checkpoint, capture the log files that have been generated in the
past hour, and copy them offsite. The accumulated log files, in combination
with the previous database backup, could be used with db_recover to
reconstruct the database up to the time the last collection of log files was
copied offsite. This method affords good protection, with minimal space
overhead.
2. Periodically run slapcat and back up the LDIF file:
Slapcat can be run while slapd is active. However, one runs the risk of an
inconsistent database- not from the point of slapd, but from the point of
the applications using LDAP. For example, if a provisioning application
performed tasks that consisted of several LDAP operations, and the slapcat
took place concurrently with those operations, then there might be
inconsistencies in the LDAP database from the point of view of that
provisioning application and applications that depended on it. One must,
therefore, be convinced something like that won't happen. One way to do that
would be to put the database in read-only mode while performing the
slapcat. The other disadvantage of this approach is that the generated LDIF
files can be rather large and the accumulation of the day's backups could
add up to a substantial amount of space.
You can use {{slapcat}}(8) to generate an LDIF file for each of your {{slapd}}(8)
back-bdb or back-hdb databases.
...
...
@@ -19,8 +52,7 @@ back-bdb or back-hdb databases.
For back-bdb and back-hdb, this command may be ran while slapd(8) is running.
MORE
MORE on actual Berkeley DB backups later covering db_recover etc.
H2: Berkeley DB Logs
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment